Biologiczne mechanizmy współwystępowania uzależnienia od alkoholu i nikotyny

Biological mechanisms of comorbidity of alcohol and nicotine dependence

Anna Wnorowska, Katarzyna Mika, Anna Podgórska, Marcin Wojnar
Katedra i Klinika Psychiatryczna Warszawskiego Uniwersytetu Medycznego

Abstract - Most of alcohol-dependent individuals smoke cigarettes and are often tobacco co-addicted. Nicotine reinforces pleasurable properties of ethanol and simultaneously decreases some of its negative effects. Chronic use of tobacco leads to the increase of alcohol intake. Research results show that smokers drink more alcohol than non-smokers. On the other hand, ethanol potentiates rewarding effects of nicotine and increases the amount of smoked cigarettes. To date, many mechanisms responsible for comorbidity of alcohol and nicotine dependence have been found. Nicotinic acetylcholine receptors (nAChR) in the mesolimbic pathway are the most common place of action for both ethanol and nicotine. The activation of nAChR leads to the release of dopamine, which causes the pleasure. Both psychoactive substances have the ability to modify the number and the activity of nAChR. This mechanism is responsible for the development of cross-tolerance between nicotine and alcohol. Other neurotransmitters like gamma-aminobutiric acid or serotonin are also involved in the development of nicotine and ethanol co-dependence. It has been shown, that co-occurrence of alcohol and tobacco dependence can be inherited. Research in the field of genetics defines the role of particular genes coding receptors’ and neurotransmitters’ proteins in the development of the two disorders. Knowledge about these genetic mechanisms can be used in the future in clinical practice, especially in prophylaxis, diagnostics and treatment of addictive behaviors.

Keywords: alcohol, nicotine, dependence, nicotinic receptor, cross-tolerance

rozwój zjawiska tolerancji krzyżowej. W jednocześnie rozwój obu uzależnień stwierdzono również udział między innymi takich układów neuroprzekaźnikowych, jak układ gabaergiczy czy serotonergiczny. W wielu badaniach wykazano, że skłonność do występowania jednoczesnego uzależnienia od obu substancji psychoaktywnych jest uwarunkowana genetycznie i może być dziedziczona. Badania poszczególnych genów kodujących białka receptorów i neuroprzekaźników pozwalają określić ich rolę w rozwój danego zaburzenia. Poznanie mechanizmów genetycznych biorących udział w etiopatogenezie uzależnień może mieć w przyszłości szerokie zastosowanie w praktyce klinicznej w zakresie profilaktyki, diagnostyki oraz terapii.

Słowa kluczowe: alkohol, nikotyna, uzależnienie, receptory nikotynowe, tolerancja krzyżowa

Wprowadzenie

Alkohol i nikotyna są dwiema najbardziej rozpowszechnionymi substancjami psychoaktywnymi na świecie. Według danych GUS z 2002 r. w Polsce codziennie pali ok. 9,6 mln osób, czyli 26,3% populacji (patrz: rys. 1) (1). Wyniki badań GATS wskazują, że w grupie palących codziennie jest 5,2 mln dorosłych mężczyzn i 3,5 mln dorosłych kobiet, przy czym średnia liczba wypalanych papierosów w ciągu doby wynosi 17,2 (2). Ocenia się, że 5% mężczyzn i 1% kobiet w UE jest uzależnionych od alkoholu (3), w Polsce liczbę osób uzależnionych od alkoholu szacuje się na około 800–900 tys. (4). Tylko 25% populacji w Polsce utrzymuje abstynencję od alkoholu (patrz: rys. 2). Badania epidemiologiczne wykazują, że przewlekłe używanie tych substancji psychoaktywnych jest w krajach rozwiniętych najczęstszą przyczyną zgonów, którym można zapobiec (5). W 2002 r. w Europie, gdzie wskaźniki spożywania alkoholu są najwyższe na świecie, aż 13,5% zgonów wśród osób w wieku 20–64 lat było związkami z alkoholem (6). Z kolei umieralność związana z paleniem tytoniu jest największa w grupie wiekowej 45–64 lata i sięga 36% w Europie oraz 47% w Polsce (6). Zarówno alkohol jak i tytoń wzajemnie wzmacniają swoje niekorzystne działanie

![Rysunek 1. Procentowy rozkład populacji w Polsce pod względem palenia tytoniu (wg danych GUS, 2004)](image)

Distribution of smoking in Polish population according to Central Statistical Office data (2004)

216
polegające m.in. na rozwoju chorób nowotworowych takich jak rak krwionośnych, gardła, przewodu żołądkowo-jelitowego. Wpływają również na zapoczątkowanie i przebieg wielu chorób niewskazanych m.in. układu krążenia, trzustki i wątroby.

Na szczególną uwagę zasługuje fakt, iż zarówno alkohol jak i nikotyna są często używane jednocześnie, co z kolei sugeruje istnienie silnych wzajemnych zależności między obiema substancjami (7). Szacuje się, że około 2% populacji ogólnej spełnia jednocześnie kryteria diagnostyczne dla uzależnienia od alkoholu i tytoniu (8, 9).

Według opublikowanych danych od 50% do 90% osób uzależnionych od alkoholu przewlekłe pali papierosy (10). Ocena się, że prawdopodobieństwo palenia tytoniu przez osoby używające alkoholu jest około 2–3 krotnie większe niż w populacji ogólnej (8). Warto zaznaczyć, że osoby, które piją bardziej intensywnie, jednocześnie palą więcej (11). Wyraźne są również różnice między palącymi i niepalącymi uzależnionymi od alkoholu. Palacze piją częściej i w większych ilościach (12).

Z drugiej strony wielu badaczy w dziedzinie uzależnień od środków psychoaktywnych uważa przewlekłe palenie tytoniu za jeden z najważniejszych czynników ryzyka rozwoju uzależnienia od alkoholu (7, 13). Zjawisko to dotyczy zwłaszcza młodzieży (14). Nastolatki, które zaczynają regularnie palić papierosy, są trzykrotnie bardziej narażone na zapoczątkowanie picia alkoholu i rozwój uzależnienia (15). Zaobserwowano również, iż ryzyko uzależnienia od alkoholu jest dodatnio skorelowane z ilością wypalanych papierosów (16).

Pomimo istotnych różnic w budowie chemicznej i efektach działania etanolu i nikotyny, badania potwierdziły obecność wzajemnych interakcji, które mogą uzasadniać równoczesne używanie obu tych substancji. Pod uwagę brane są różne mechanizmy takie jak: udział receptorów, polimorfizm genów i inne.
W ostatnich latach przeprowadzono wiele eksperymentów na modelach zwierzęcych, badano również osoby uzależnione od alkoholu i nikotyny, a także ich rodziny. Wyniki opublikowanych prac podkreślają rolę mózgowych acetylcholinergicznych receptorów nikotynowych (nicotinic Acetylcholinergic Receptor, nAChR) jako wspólnego miejsca działania dla nikotyny i etanolu. Udokumentowano wpływ obu substancji na funkcjonowanie mezolimbicznego układu dopaminowego oraz innych układów neuroprzekaźnikowych w mózgu. Coraz częściej podkreśla się rolę wspólnych czynników dziedzicznych w rozwoju obu uzależnień.

Wpływ nikotyny na picie alkoholu

Powszechnie dominuje opinia, że to nikotyna sprzyja piciu alkoholu. Chodzi zwłaszcza o właściwości nikotyny pozwalające na częściowe odwrócenie niektórych nieprzyjemnych efektów picia, takich jak osłabienie funkcji poznańczych czy zaburzenia koordynacji ruchowej (17). Ponadto zauważono, że nikotyna wzmacnia przyjemne doznania wywołane spożyciem etanolu (18).

W badaniach oceniających wpływ nikotyny na używanie alkoholu wykorzystywano zwierzęta pochodzące ze specjalnie wyselekcjonowanych linii. Wyhodowane szczury lub myszy różniły się pod względem chęci do przyjmowania alkoholu oraz efektów jego działania. De Frieboe i wsp. (19) wykazali, że pewne cechy wrażliwości na działanie etanolu mogą być współdzielone ze zwiększoną podatnością na niektóre efekty działania nikotyny. Zaobserwowano między innymi, że myszy wyselekcjonowane pod względem zwiększonej podatności na sedatywne działanie etanolu (tzw. long-sleep mice, LS), prezentowały bardziej nasiloną hipotermię i spadek aktywności po podaniu nikotyny, w porównaniu do grupy kontrolnej (tzw. short-sleep mice, SS) (19).

Kolejne badania pokazały, że są to zależności dalece bardziej złożone. Istotne znaczenie mają tu takie czynniki jak między innymi dawka oraz czas podawania określonej substancji. Pozornie sprzeczne wyniki w stosunku do wyżej przytoczonych badań Potthofa, otrzymali Dyr i wsp. (20) badając szczury wywodzące się z linii Wistar – selekcjonowane w kierunku przyjmowania wysokich albo niskich dawek etanolu (Warsaw High/Low Preferring rats). Po podaniu nikotyny w pojedynczej podskórnej iniekcji zaobserwowano zmniejszenie spożycia etanolu przez szczury preferujące alkohol, przy czym ilość przyjmowanego pokarmu nie uległa zmianie.
Inni autorzy wykazali, że regularne podawanie nikotyny, na przykład w postaci podskórnych iniekcji, w przeciwieństwie do jednorazowej aplikacji, powoduje zwiększenie ilości spożywanego alkoholu przez zwierzęta laboratoryjne (21–23). Le i wsp. (23) zaobserwowali, że w początkowym okresie po podaniu nikotyny zmniejsza się zapotrzebowanie na alkohol, natomiast w miarę trwania eksperymentu i regularnego aplikowania nikotyny wzrastała ilość alkoholu przyjmowanego przez zwierzęta. Wyniki otrzymane przez Le i wsp. tłumaczy obecność tolerancji krzyżowej między etanolem i nikotyną.

Zjawisko tolerancji w odniesieniu do danej substancji psychoaktywnej polega na stopniowej adaptacji organizmu do stosowanej dawki, a tym samym, konieczności jej zwiększania celem uzyskania pożądanego efektu. W przypadku tolerancji krzyżowej między dwiema substancjami psychoaktywnymi, używanie jednej substancji powoduje zwiększenie zapotrzebowania również na drugą i odwrotnie. Istotne znaczenie tego zjawiska podkreślają Collins i wsp. (24). Na podstawie pomiarów temperatury ciała i aktywności lokomotorycznej autorzy zaobserwowali, iż przewlekłe podawanie myszom etanolu wywoływało rozwój tolerancji na jego działanie. Ponadto, oceniając częstość rytmu serca i temperatury ciała, wykazali obecność tolerancji krzyżowej w stosunku do działania nikotyny.

Nikotyna wzmacnia subiektywnie przyjemne doznania związane ze spożyciem etanolu (26). Po wypiciu alkoholu osoby palące, które otrzymały nikotynę w postaci transdermalnej, potwierdzały większe uczucie euforiai i zadowolenia. Osoby te czuły się również bardziej odurzone po spożyciu alkoholu w porównaniu z grupą kontrolną, której zamiast nikotyny podawano placebo. Subiektywną poprawę nastroju u osób poddanych działaniu nikotyny tłumaczy się szybszym wzrostem stężenia etanolu we krwi potwierdzonym w badaniach laboratoryjnych (26).

Wpływ etanolu na przyjmowanie nikotyny

Uważa się, że nie tylko nikotyna modyfikuje przyjmowanie alkoholu, ale również etanol może mieć istotny wpływ na zapoczątkowanie i podtrzymywanie palenia tytoniu. Le i wsp. (27) porównywali przyjmowanie nikotyny przez dwie grupy młodych szczurów pochodzących z dwóch linii różniących się pod względem skłonności do alkoholu. Szczury z linii hodowlanej ”P” (alcohol-prefering rats) chętnie piły alkohol niż zwierzęta z linii „NP” (alcohol-nonpreferring rats). Obu grupom podawano
dożylnie nikotynę, której dawkę zwierzęta mogły samodzielnie regulować. Zobserwowano, że szcztury „P” dwa razy częściej sięgały po nikotynę, a po ekspozycji na bodźce kojarzone z przyjmowaniem nikotyny znacznie intensywniej jej szukały (27). Powyższe wyniki tłumaczy obecność wspomnianego wyżej zjawiska tolerancji krzyżowej. Szcztury "P", które przyjmowały większe dawki etanolu, szybciej adaptowały się do mniejszych dawek nikotyny i chętniej zwiększali jej ilość.

Podobne zależności wykazano u ludzi. Rose i wsp. (28) zaobserwowali, że etanol nie tylko potęgował przyjme doznania związane z paleniem tytoniu takie jak poczucie zadowolenia czy uspokojenie, ale również wzmacniał efekt stymulujący nikotyny. Warto podkreślić, iż w badanej grupie spożycie etanolu zmniejszało nasielenie nieprzyjemnych objawów związanych z głodem nikotynowym (28).

To ostatnie spostrzeżenie jest sprzeczne z wynikami pracy Sayette i wsp. (29). Autorzy przebadali 138 osób nieuzależnionych od alkoholu palących papierosy, wśród których 70 spełniało kryteria uzależnienia od nikotyny (wg DSM-IV). Po 12 godzinach abstynencji od nikotyny wszystkich uczestników poproszono o wypicie alkoholu bądź placebo, a następnie poddano ekspozycji na bodźce kojarzone z paleniem tytoniu oraz bodźce obojętne. Okazało się, że spożycie alkoholu w znacznym stopniu zwiększało chęć sięgnięcia po papierosy. Na uwagę zasługuje fakt, iż alkohol potęgował objawy głodu nikotynowego w całej grupie palących, zarówno uzależnionych jak i nieuzależnionych od nikotyny (29).

Mechanizmy działania alkoholu i nikotyny prowadzące do jednoczesnego ich używania

Jak wspomniano, nikotyna jest bezpośrednim ligandem nAChR. Każdy receptor jest pentamerem zbudowanym z różnych wariantów podjednostek α i lub β. Efekty działania nikotyny zależą od podtypu receptoru i jego umieszczania w ośrodkowym układzie nerwowym (oun). Przyjmowanie nikotyny stymuluje oun, co skutkuje m.in. nasieleniem procesów uwagi. Ponadto powoduje ona wzrost wydzielania wahopresyny, podwyższa częstość akcji serca oraz wartości ciśnienia tętniczego krwi. W dużych dawkach nikotyna może wywołać drgawki (7, 30).

Etanol nie jest bezpośrednim ligandem żadnego ze znanych typów receptorów (31), może wywierać wpływ na wiele różnych receptorów zlokalizowanych w oun. Potwierdzono wpływ etanolu na receptory gabaergiczne typu A (GABA-A), glutaminowe (NMDA), dopaminowe (DR), serotoninowe (5-HTR) oraz nikotynowe (nAChR). Etanol hamuje aktywność oun, co objawia się spowolnieniem procesów uwagi, pamięci, uczenia się. Działa również przeciwlękowo, nasennie oraz przeciwdrgawkowo. Po spożyciu alkoholu zmniejsza się wydzielanie wahopresyny a poprzez rozszerzenie obwodowych naczyń krwionośnych obniża się ciśnienie tętnicze krwi (7).

Wspólnym miejscem działania etanolu i nikotyny w oun jest mezolimbiczny układ dopaminowy, czyli tzw. układ nagrody. Układ ten obejmuje takie struktury mózgu jak: jądro próbów (Nucleus Accumbens, NAc) w brusznej części prążkowia, obszar
brzuszny nakrywki (Ventral Tegmental Area, VTA) oraz korę przedczołową (Prefrontal Cortex, PC). Z VTA w pniu mózgu neurony dopaminergiczne dają projekcje do NAc, a stąd dalej do PC. Wydzielanie dopaminy w NAc powoduje odczuwanie przyjemności. Uważa się, że ten mechanizm jest w głównej mierze odpowiedzialny za oddzielanie substancji psychoaktywnych na układ nagrody (32). Aktywacja układu nagrody poprzez przewlekłe stosowanie tych substancji odgrywa kluczową rolę w rozwoju uzależnień.

Efekty używania nikotyny i alkoholu zależą od aktywności dopaminowej układu mezolimbicznego. Obie substancje stymulują uwalnianie dopaminy w NAc (33). Nikotyna działa na układ mezolimbiczny poprzez bezpośrednie wiązanie się z nAChR, które znajdują się na neuronach VTA. W badaniach na szczurach wykazało, że podanie nikotyny bezpośrednio do tej okolicy powoduje zależność od dawki wzrost uwalniania dopaminy w NAc (33).

Wykazano również, że etanol i nikotyna wzajemnie wzmacniają swoje właściwości nagradzające. W badaniach na modelu zwierzęcym podane łącznie działają synergistycznie powodując zwiększenie wydzielania dopaminy w podobnym stopniu jak w przypadku podania tylko jednej substancji w większej dawce (33).

Z kolei zablokowanie nAChR zlokalizowanych w VTA (na przykład poprzez podanie mekamylaminy) znosi wywołane alkoholem uwalnianie dopaminy w NAc (33, 34). Oddziaływanie etanolu na układ mezolimbiczny odbywa się więc również, przynajmniej częściowo, za pośrednictwem nAChR w VTA.

Rola nAChR w jednoczesnym używaniu nikotyny i alkoholu

Receptory nikotynowe są jednym z najbardziej prawdopodobnych miejsc interakcji alkoholu i nikotyny. Szczególne znaczenie mają dwa podtypy nAChR najczęściej występujące w oun: α4β2 oraz α7 (13). Nikotyna działa agonistycznie na oba podtypy nAChR, przy czym wykazuje większe powinowactwo do α4β2. Przewlekłe palenie tytoniu powoduje desensytyzację nAChR, zmniejszenie przewodnictwa neuronalnego i w mechanizmie *up-regulation* wzrost liczby receptorów, szczególnie podtypu α4β2 (35). Powyższe zjawisko odpowiada za rozwój tolerancji na działanie nikotyny oraz wystąpienie objawów głodu nikotynowego (36).

W oparciu o badania na zwierzętach stwierdzono, że etanol wykazuje działania pobudzające receptorzy nikotynowe α4β2 oraz hamujące w stosunku do receptorów α7. Marszałek i wsp. (37) wykazaли, że etanol ma właściwości częściowego odwracania wywołanej przez nikotynę desensytyzacji α4β2. U szczurów, którym przez pół roku podawano regularnie alkohol, stwierdzono zmiany w liczbie receptorów α4β2 i α7 w niektórych rejonach mózgu (38). Booker i wsp. (39) w badaniach z użyciem dwóch linii myszy: LS i SS, wykazali, że etanol modyfikuje liczbę nAChR w oun. Po sześciu miesiącach podawania zwierzętom etanolu, stwierdzono u myszy z linii SS wzrost wiązania nikotyny przez receptorzy zlokalizowane we wzgórzu oraz zwiększenie wiązania α-bungarotoksyny – antagonisty nAChR w mózdku i wzgórku
wyższym. Z kolei w drugiej grupie zwierząt pochodzących z linii LS zaobserwowano zmniejszenie wiązania α-bungaratoksyny w hipokampie (39). Wykazano, że etanol wpływa na liczbę i funkcjonowanie nAChR w różnych rejonach mózgu, a efekt jego działania prawdopodobnie zależy od uwarunkowań genetycznych.

W wielu pracach potwierdzono rolę nAChR w powstawaniu nagradzających i awersyjnych efektów działania etanolu u gryzoni (40, 41). Prawdopodobnie zarówno zmiany w liczbie jak i różnice w budowie strukturalnej nAChR warunkują osobniczą wrażliwość organizmu na działanie zarówno nikotyny jak i etanolu.

Badania genetyczne dotyczące nAChR wykazały istnienie wielu polimorfizmów w obrębie genów kodujących poszczególne podjednostki receptorowe. Opisano m.in. dwie formy podjednostki α4, wchodzącą w skład receptora α4β2, których geny różnią się pojedynczym nukleotydem. Zmiana kodowanego przez niego aminokwasu, a tym samym struktury całego białka, modyfikuje budowę i działanie receptora. Zjawisko to może warunkować skłonność jednostki do przyjmowania nikotyny.

Dodatkowych dowodów na znaczenie polimorfizmów nAChR α4β2 w modulacji działania alkoholu i nikotyny dostarczają prace Owensa i wsp. (42). Porównanie wyników testu reakcji na dźwięk wykazało, że zwierzęta reagują inaczej w zależności od obecności danego polimorfizmu w obrębie genu dla podjednostki α4 nAChR. Test polega na wywoływaniu wygórzonej reakcji ruchowej (Acoustic Startle Response, ASR) w odpowiedzi na nagły, głośny bodziec dźwiękowy. Po podaniu etanolu lub nikotyny obserwowano większe opóźnienie ASR wśród osobników posiadających polimorfizm As29T w genie podjednostki α4 nAChR (42). Butt (43) sugeruje, że od polimorfizmów w obrębie genu podjednostki α4 może również zależeć nadpobudliwość w przebiegu alkoholowego zespołu abstynencyjnego. Z kolei brak podjednostki β2, tworzącej ten sam receptor α4β2, powoduje poprawę wyniku w teście reakcji na dźwięk. Szczególnie dotyczy to sytuacji, gdy reakcja została opóźniona po podaniu alkoholu (42).

W literaturze zostały opisane polimorfizmy w obrębie genu kodującego podjednostkę α7, wchodzącą w skład nAChR o tej samej nazwie. W tym przypadku zmianie ulega poziom ekspresji genu, a co za tym idzie zmienia się liczba receptorów. Wpływ działania alkoholu nie został do końca poznany (43, 44). Bowers i wsp. (45) zaobserwowali, że po podaniu alkoholu, myszy pozbawione genu podjednostki α7 (α7 knock-out mice) prezentowały mniejszy niepokój, zwiększoną hipotermię oraz wydłużony okres poalkoholowej utraty przytomności. Deficyt podjednostki α7, a tym samym receptora α7, powoduje większą wrażliwość neuronów na toksyczne działanie alkoholu. Wydaje się, że obecność podjednostki α7 może mieć właściwości ochraniające komórki nerwowe przed toksycznym działaniem etanolu oraz uszkodzeniem owin związанныm z wystąpieniem alkoholowego zespołu abstynencyjnego.

Inne receptory i układy neuroprzekaźnikowe

Alkohol i nikotyna wpływają na funkcjonowanie owin nie tylko poprzez działanie na nAChR zlokalizowane na neuronach uwalniających dopaminę w układzie nagrody. Obie substancje psychoaktywne modulują także inne układy neuroprzekaźnikowe.
W wyniku pobudzenia nAChR przez nikotynę, w różnych rejonach mózgu dochodzi do uwalniania serotonininy (5-HT), noradrenaliny, kwasu γ-aminomosomalowego (GABA) a także kwasu glutaminowego (46). Podobnie etanol, łącząc się bezpośrednio, choć niespecyficznie z różnymi receptorami, w tym również z nAChR, stymuluje wydzielanie wyżej wymienionych neuroprzeźkaźników.

Szczególnie dobrze udokumentowano oddziaływanie obu substancji psychoaktywnych, a zwłaszcza alkoholu na układ gabaergiczny. GABA jest neuroprzeźkaźnikiem hamującym neurotransmisję między komórkami nerwowymi. Pobudzenie receptora gabaergicznego powoduje zablokowanie dalszego przeźkaźnictwa. Neurony gabaergiczne umiejscowione w układzie mezolimbicznym – w NAc i VTA – hamują uwalnianie dopaminy i w ten sposób modulują procesy związane z powstawaniem efektu nagrody (47). Etanol ma właściwości bezpośredniego wiązania z receptorem gabaergicznym typu A w wyniku czego dochodzi do zaburzeń motorycznych obserwowanych po spożyciu alkoholu (48). Zaobserwowano, że agoniści receptorów gabaergicznych typu A łagodzą objawy alkoholowego zespołu abstynencyjnego (49).

Z kolei nikotyna modyfikuje funkcjonowanie receptorów gabaergicznych typu B. W tym mechanizmie wzmacniany jest efekt nagrody wywołany używaniem innych substancji psychoaktywnych. Potwierdza to słuszność założenia, że receptory gabaergiczne typu B mogą być ważnym celem terapii uzależnienia od nikotyny i innych substancji psychoaktywnych (50).

Opisany został także wpływ etanolu i nikotyny na układ serotoninergiczny, który odgrywa istotną rolę w regulacji nastroju, kontroli impulsów, apetytu i agresji. Udoğaniono, że zmiany w transmisji serotoninergicznej występują między innymi w zaburzeniach depresyjnych, lękowych oraz w uzależnieniach m.in. od alkoholu. Zarówno picie alkoholu jak i palenie tytoniu stymuluje funkcję układu serotoninergicznego (51). Nikotyna podawana szczerowum powoduje w krótkim czasie (15 minut) zwiększenie uwalniania 5-HT w korze mózgowy tych zwierząt (52). Z kolei przewlekłe przyjmowanie alkoholu i nikotyny zmniejsza wydzielanie 5-HT i może prowadzić do zmiany stanu psychicznego jak np. wyzwolenia bądź nasilenia objawów depresji. Wydaje się, że obniżenie poziomu 5-HT sprzyja wahaniom nastroju oraz zwiększeniu łaknienia w trakcie głodu nikotynowego (52). Dodatkowo wykazano, iż genetycznie uwarunkowany niski poziom stężenia serotonininy w oon koreluje ze zwiększeniem spożycia alkoholu i uważany jest za istotny czynnik ryzyka rozwoju uzależnienia (53). Wyniki badań epidemiologicznych potwierdzają istnienie związku pomiędzy współwystępowaniem uzależnienia od nikotyny i alkoholu oraz objawów dużej depresji (54). Substancje psychoaktywne wpływają na układ serotoninergiczny nie tylko za pośrednictwem receptorów serotoninowych, ale również modyfikują aktywność enzymów biorących udział w metabolizmie 5-HT. Przewlekłe przyjmowanie nikotyny i alkoholu prowadzi do zmniejszenia stężenia 5-HT poprzez hamowanie działania zlokalizowanej w jądrach szwu hydroksylazy tryptofanu (TPH), enzymu biorącego udział w syntezie 5-HT (55).

Substancje psychoaktywne, takie jak opioidy, kanabinoidy czy alkohol, działają na oon także za pośrednictwem receptorów μ opioiendowych. Z obserwacji zwierząt
laboratoryjnycyników genetycznych wynika, że również w mechanizmie działania nikotyny wyżej wymienione receptory odgrywają istotną rolę. Myszy pozbawione receptorów μ nie doświadczają nagradzającego działania nikotyny oraz ujawniają mniej nasilone objawy zespołu abstynencyjnego po jej odstawieniu (56).

Wpływ czynników genetycznych na uzależnienie od nikotyny i alkoholu

Rozwój uzależnienia od substancji psychoaktywnych, podobnie jak w przypadku innych zaburzeń psychicznych, jest procesem złożonym, zależnym od wielu czynników. W dalszym ciągu trwają dyskusje nad tym, które z nich mają większe znaczenie.

Koopmans i wsp. (57) badając pary bliźniąt wykazali, że zapoczątkowanie picia alkoholu i palenia tytoniu przez nastolatków zależy przede wszystkim od czynników środowiskowych. Co ciekawe, dżonglowe badacze zaobserwowali, że wraz z wiekiem rośnie znaczenie czynników genetycznych i już u młodych dorosłych (17–25 lat) przeważają one nad wpływami środowiska. Inne prace dowodzą, iż w etiopatogenezie uzależnienia od nikotyny czynniki genetyczne stanowią aż 60% (58), a w przypadku alkoholu w zależności od płci: 51–65% dla kobiet i 48–73% dla mężczyzn (59–61). Badania Koopmansa i wsp. pokazały, iż udział czynników genetycznych w odniesieniu do takich zmiennych, jak kontynuacja palenia tytoniu oraz ilość wypalanych papierosów w ciągu doby wynosi aż 86% (62). Osler i wsp. (63) wykazali, że wywiad w kierunku palenia tytoniu oraz intensywność palenia u osób adoptowanych i ich biologicznego pełnego rodzeństwa korelowały w sposób istotny statystycznie.

Rozbieżności w ocenie uwarunkowań genetycznych danego zaburzenia wynikają z odmiennych metodologii badań. Analizowane są różne zmienne, takie jak płeć, kryteria diagnostyczne, a w przypadku używania substancji psychoaktywnych również wiek rozpoczęcia oraz stopień intensywności ich przyjmowania.

Na podstawie danych zebranych w wielośrodkowym badaniu COGA (Collaborative Study on the Genetics of Alcoholism) Bierut i wsp. stwierdzili, że najbardziej znaczącym czynnikiem ryzyka uzależnienia od danej substancji jest wcześniejsze istnienie uzależnienia od innej substancji psychoaktywnej. Wykazano, że u rodzeństwa osób uzależnionych od alkoholu (wg kryteriów DSM-III) prawdopodobieństwo zapoczątkowania i kontynuacji palenia tytoniu w ilości 1 pachci papierosów na dobę jest 1,7-krotnie wyższe w porównaniu z rodzeństwem osób nieuzależnionych od alkoholu (64).

Częste współwystępowanie uzależnienia od nikotyny i alkoholu skłoniło naukowców do poszukiwania wspólnych genów predysponujących do jednoczesnego rozwoju obu uzależnień. Wydaje się, że czynniki genetyczne odpowiadają w około 50% za jednoczesne używanie nikotyny i alkoholu (46).

Zaburzenia psychiczne, w tym również uzależnienia, są chorobami o złożonym, wielogenowym mechanizmie dziedziczenia. Techniką służącą identyfikacji regionów na chromosomach mogących zawierać geny związane z daną chorobą jest analiza sprzężeń (Linkage Analysis, LA). Metoda polega na analizie materiału DNA pobra-
negu od osób spokrewnionych, która pozwala na określenie, czy badany fragment DNA, tzw. marker, jest dziedziczony częściej wśród krewnych niż w populacji ogólnej.

LA wykazała istnienie obszarów odpowiedzialnych za wspólne dziedziczenie uzależnienia od alkoholu i nikotyny na chromosomach: 1, 2 i 4 (65). Znaleziono również miejsce na chromosomie 3, które może mieć znaczenie dla wspólnego dziedziczenia uzależnienia od alkoholu i palenia nałogowego definiowanego jako palenie co najmniej 20 papierosów dziennie przez okres przynajmniej 6 miesięcy (65). Inni autorzy odkryli, iż wspóluzależnienie od alkoholu i nikotyny może być związane z miejscem na chromosomie 19q, który zawiera gen kodujący enzym CYP2A6 (66,67).

Geny odpowiedzialne za rozwój uzależnień można zakwalifikować do jednej z dwóch głównych kategorii. Do pierwszej grupy należą geny swoiste dla danej substancji psychoaktywnej, najczęściej związane z jej metabolizmem lub swoistymi receptorami. Do drugiej zaliczane są geny wspólne dla wszystkich uzależnień. Ich produkty modyfikują funkcjonowanie mezolimbicznego układu nagrody, są związane z metabolizmem, transportem oraz receptorami neuroprzekaźników.

W przypadku nikotyny badane są przede wszystkim geny dla podjednostek receptorów nikotynowych oraz geny enzymów metabolizujących nikotynę do kotynyny: CYP2A6 i CYP2B6. Różne warianty genu CYP2A6 aż w 90% odpowiadającego za rozpad nikotyny warunkują jego aktywność a tym samym szybkość metabolizmu i czas eliminacji nikotyny z organizmu. Osoby szybciej metabolizujące wykazują większe zapotrzebowanie na nikotynę, palą bardziej intensywnie, a przez to są bardziej podatne na rozwój uzależnienia (47).

Badając predyspozycję do uzależnienia od alkoholu analizowano głównie warianty genów dehydrogenaz: alkoholowej (ADH) i aldehydowej (ALDH), ale również enzymy cytochromu P450 m.in. enzym 2E1 (CYP2E1). Podobnie jak w przypadku nikotyny, aktywność powyższych enzymów biorących udział w metabolizmie etanolu jest dodatnio skorelowana z ryzykiem rozwoju uzależnienia. Osoby szybciej metabolizujące alkohol są bardziej predysponowane do rozwoju uzależnienia. W wyniku typowego dla mieszkańców Azji Wschodniej deficytu funkcjonowania mitochondrialnej ALDH, czyli ALDH2, wzrasta stężenie acetaldehydu, który poprzez nieprzyjemne objawy powoduje awersję do alkoholu.
Innym często badanym enzymem jest CYP2E1, który – choć metabolizuje etanol w nieco mniejszym stopniu – może mieć istotne znaczenie, jeśli chodzi o jednoczesne używanie alkoholu i produktów tytoniowych. Wykazano, że pod wpływem przyjmowania nikotyny w mózgach szczurów następuje wzrost aktywności CYP2E1. Podobne zjawisko zaobserwowano u osób przewlekli pijących alkohol i palących tytoń (68). Niektórzy naukowcy sugerują, że to właśnie indukowany nikotyną CYP2E1 może być odpowiedzialny za rozwój tolerancji na działanie alkoholu i ograniczenia intensywności intoksylacji po jego spożyciu (47, 69). Prawdopodobnie CYP2E1 wpływa również na szybkość metabolizmu nikotyny. Dodatkowo CYP2E1 bierze udział w aktywacji pochodzących z dymu tytoniowego prokancerogenów – N-nitrozamin. Niektórzy badacze uważają, że istnieje związek między aktywnością tego enzymu a wystąpieniem raka płuc (70).

W badaniach genów wspólnych dla uzależnień od alkoholu i nikotyny szczególną wagę przywiązuje się do genów związanych z układem nagrody. Sugeruje się, że kombinacje wariantów genów związanych z działaniem poszczególnych neuroprzekąźników mogą prowadzić do niepewidlowego uwalniania dopaminy, a tym samym dysfunkcji w zakresie odczuwania nagrody. Konsekwencją tego zjawiska jest zwiększać chęć sięgniacia po substancje psychoaktywne, które pobudzają układ nagrody, dając poczucie zadowolenia a przewlekłe używane prowadzą do rozwoju uzależnień (71).

Zebrane dane pozwala na potwierdzenie związku pomiędzy niektórymi allelem w polimorfizmach genów receptorów dopaminergicznych D1-D5 a wystąpieniem takich zaburzeń jak uzależnienie od substancji psychoaktywnych, hazardu oraz ujawnieniem pewnych cech osobowości, np. skłonności do poszukiwania nowych doznaj (novelty seeking) (47).

Część badań potwierdzała zależność między polimorfizmem w nieulegającym translacji regionie 5' genu receptora D1 (DRD1) a palieniem papierosów, użyciawaniem alkoholu, narkotyków oraz zachowaniami takimi jak kompulsywne robienie zakupów, objadanie się, czy hazard (72). Udowodniono, że szczególnie dwa polimorfizmy pojedynczych nukleotydów (single nucleotide polymorphism, SNP): rs686 i rs4532 genu DRD1 mają związek z rozwojem uzależnienia od alkoholu i nikotyny (73, 74).

Duża liczba receptorów dopaminowych D3 (DRD3) w jądrze półcełącym może przemawiać za ich istotnym udziałem w rozwoju uzależnień. Dotychczas nie udało
Biologiczne mechanizmy współwystępowania uzależnienia od alkoholu i nikotyny

się jednak wykazać zależności między wariantami genu DRD3 a skłonnością do prze- wlekarego użycia substancji psychoaktywnych (47). W badaniach naukowych nie znalazły jednoznacznego potwierdzenia również hipotezy dotyczące roli funkcjonalnych polimorfizmów genu receptoru dopaminowego D4 (DRD4) i D5 (DRD5) w rozwoju uzależnienia od alkoholu. Istnieją doniesienia o protekcyjnej roli wariantów genu DRD5, jeśli chodzi o zapoczątkowanie palenia tytoniu (79).

W przypadku układu gabaergicznego genetyczne warianty jego receptorów różnią się aktywnością i poziomem neuroprzekaźnictwa, a co za tym idzie w zmienny sposób modulują procesy związane z uzyskiwaniem nagrody w wyniku przyjmowania substancji psychoaktywnych. Dysfunkcja w układzie gabaergicznym przyczynia się do obniżenia jego hamującej roli i prowadzi do zwiększenia aktywacji neuronów w ogniu (80). W projekcie COGA zidentyfikowano dość duży region DNA na chromosomie 4 zawierający geny dla podjednostek receptorów GABA-A. Cały region okazuje się mieć dość istotne znaczenie pod względem predyspozycji do rozwoju uzależnienia od alkoholu (81). Zlokalizowano tu między innymi wiele SNP dla podjednostki a2 receptora GABA-A, dla których potwierdzono dodatnią korelację z rozwojem uzależnienia od alkoholu (82, 83). W przypadku nikotyny prowadzono badania, które potwierdziły związek między występowaniem uzależnienia od nikotyny a regionem na chromosomie 9 zawierającym gen dla receptorów GABA-B (65, 84). Li i wsp. (84) potwierdzili obecność wielu SNP w genie dla podjednostek tego receptora i ich związek z ryzykiem rozwoju uzależnienia od nikotyny.

Dotychczas nie potwierdzono istotnej roli genów dla receptorów serotoninergicz- nych 5-HT1B, 5-HT1A, 5-HT1C w rozwoju uzależnienia od nikotyny. Polina i wsp. (85) wskazują na częstszes występowanie allelu A polimorfizmu A-1438G genu dla receptora serotoninowego 2A (HTR2A) wśród osób palących tytoń, jednak niezależ- nie od stopnia używania alkoholu. Przedstawiono wiele badań dotyczących roli genu dla transportera serotonininy (5-HTT) oraz regionu kontrolującego transkrypcję tego genu (5-HTTLPR) w rozwoju zaburzeń psychicznych, w tym uzależnień (86). Wyka- zano istotny związek między występowaniem wariantu krótkiego (allelu S) 5-HTTLPR a predyspozycją do uzależnienia od alkoholu. Z kolei doniesienia o związku pomiędzy współwystępowaniem długiego allelu L a paleniem tytoniu w populacji japońskiej (87) nie zostały potwierdzone w badaniach rasy kaukaskiej (88). Niektórzy autorzy zaobserwowali dodatnią korelację między wariantami 5-HTTLPR i cechami osobow petty portytycznej a paleniem tytoniu (89).

Waźną rolę w genetyce uzależnień odgrywają geny enzymów metabolizujących neuroprzekaźniki. Szczególnie wiele prac poświęca się enzymom biorącym udział w przemianach amin biogennych, w tym dopaminy, głównego neuroprzekaźnika w ogniu: monoaminooksydazie typu A (MAO-A) i B (MAO-B) oraz katecholo-O- -metyltransferazie (COMT).

Oba enzymy MAO są kodowane przez geny zlokalizowane na chromosomie X. Przeprowadzone badania wykazały, że gen MAOA ma związek z ilością wypalanych papierosów. Zaobserwowano, iż osoby posiadające polimorfizm 1460 TT/TO genu MAOA paliły więcej w porównaniu do osób z genotypami CC/CT/CO (90). Jeśli
chodzi o uzależnienie od alkoholu, wykazano związek między niską aktywnością płynkowej MAO a rozwojem uzależnienia od alkoholu (91). Interesujących wniosków dostarczyły badania Philberta i wsp. (92), w których oceniano stopień metylacji DNA w obrębie genu MAO-A. Wykazano, że jest on dodatnio skorelowany z wystąpieniem objawów uzależnienia od alkoholu i nikotyny u kobiet, co ciekawe, podobnej zależności nie potwierdzono u mężczyzn (92).

Wiesbeck i wsp. (93) zaobserwowali, że liczba wypalanych papierosów przez osoby uzależnione od alkoholu i nikotyny zależy od obecności pewnego polimorfizmu w obrębie genu MAOA. Okazuje się, że aktywność enzymu MAO-A zależy od polimorfizmu zmiennej liczby powtórzeń tandemowych (variable number of tandem repeats, VNTR), w tym przypadku liczby powtórzeń 30 par zasad w regionie promotora tego genu. Aktywność enzymu jest tym większa im większa liczba powtórzeń. W pracy Wiesbecka i wsp. wśród 121 przebadanych, osoby posiadające długi allel genu MAOA (4 powtórzenia) wypałyły więcej papierosów na dobę w porównaniu z osobami o krótkim allelu (3 powtórzenia). Znaczenie wariantów genu MAOB w rozwoju uzależnienia od alkoholu i nikotyny wymaga wciąż dalszych badań.

Podsumowanie

Współwystępowanie uzależnienia od alkoholu i nikotyny jest dość powszechne, świadczą o tym liczne badania epidemiologiczne. Coraz więcej danych przemawia za tym, że nie jest kwestią przypadku, iż obie substancje są używane w sposób szkodliwy równocześnie. Naukowcy wskazują na istnienie wspólnych mechanizmów warunkujących występowanie tego zjawiska. Badania przeprowadzone z udziałem zwierząt laboratoryjnych przedstawiają różne aspekty wzajemnych interakcji pomiędzy nikotyną i etanolem. Z kolei badania genetyczne dostarczają wielu ważnych informacji pozwalających lepiej zrozumieć etiologię oraz czynniki predysponujące do rozwoju obu uzależnień. Wyniki tych badań poza wartością poznawczą mogą mieć również znaczenie kliniczne, szczególnie pod względem szacowania ryzyka wystąpienia obu uzależnień. Poszczególne geny oraz białka przez nie kodowane mogą stać się celem nowych narzędzi diagnostycznych oraz podstawą wyboru odpowiedniej
metody terapeutycznej (psychoterapii oraz farmakoterapii). Poznanie wspólnych mechanizmów rozwoju uzależnienia od alkoholu i nikotyny może ułatwić wyodrębnienie osób z grupy ryzyka, zastosowanie odpowiednich metod profilaktycznych, a w przypadku wystąpienia uzależnienia pozwoli na wybranie najbardziej skutecznego schematu leczenia.

PIŚMIENNICTWO

Adres do korespondencji
Marcin Wojnar
Katedra i Klinika Psychiatryczna WUM
ul. Nowowiejska 27, 00-665 Warszawa
Tel. 600-822-669
e-mail: marcin.wojnar@wum.edu.pl

otrzymano: 08.06.2011
przyjęto do druku: 25.10.2011

233