Grzyby halucynogenne i bieluń dziędzierzawa w diagnostyce laboratoryjnej zatruć

Hallucinogenic mushrooms and datura species in the laboratory diagnosis of poisoning

Iwona Roguska

Diagnostyka – Spółka z ograniczoną odpowiedzialnością,
Sp. kom. Oddział Wrocław, Laboratorium Toksykologiczne przy
Dolnośląskim Szpitalu Specjalistycznym im. T. Marciniaka we Wrocławiu

Abstract – In the world of plants and mushrooms, until the present time, approximately 200 species with hallucinogenic properties have been detected. In Poland psilocybe (łysiczka) and datura species (e.g. bieluń dziędzierzawa) represent the most common hallucinogenic mushrooms. Due to their easy availability and low cost, both the hallucinogenic mushrooms and datura are desirable among young people who are dependent on drugs, or experiment with different mind altering substances. Although mushrooms and datura are seasonal plants related poisoning can practically occur during the whole year.

So far, research on the consumption of hallucinogenic mushrooms indicates that they do not cause physical addiction, despite increasing tolerance with long-term use. However, they can cause mental or psychological addiction.

The main toxic substances of the hallucinogenic mushrooms are psilocybin and psilocin, which have pharmacologic properties similar to LSD. Datura (bieluń dziędzierzawa) contains toxic tropane alkaloids, mostly hioscyamine (scopolamine) and atropine (an antagonist of acetylcholine) as the main active compound.

Because of the easy access of young people to both natural and farmed hallucinogenic mushrooms, as well as to datura seeds and leaves, toxicology laboratories at poison centres have developed and performed specific tests which allow confirmation of ingestion of these toxic plants. The main diagnostic method is the thin layer chromatography (TLC) which is applied for the detection of tropane alkaloids (atropine and scopolamine) present in datura, and indole derivatives (psilocybin and psilocin) contained in the mushrooms.

Although, lethal poisoning due to ingestion of hallucinogenic mushrooms or datura seeds and leaves occurs very rarely, these plants create a real risk and danger for children and adolescents since very often, even via the Internet, they are advertised as a “free” and easily accessible alternative to strong narcotic drugs.

Key words: hallucinogenic mushrooms, datura species, tropane alkaloids, psilocybin, psilocin, dependence, detection methods

Streszczenie – W świecie roślin i grzybów wykryto do tej pory ponad 200 gatunków o właściwościach halucynogennych. W Polsce najłatwiej o grzyby halucynogenne z rodzaju łyśczka (Psilocybe) oraz bieluńie (datura, np. bieluń dziędzierzawa). Dzięki ich łatwej dostępności i niewielkim kosztom uzyskania, zarówno grzyby halucynogenne, jak i datura są poszukiwane przez młodzież eksperymentującą z różnymi substancjami zmieniającymi świadomość.
Grzyby i datura występują sezonowo, mimo to do zatruc nimi dochodzi praktycznie przez cały rok. Dotychczasowe badania konsumpcji grzybów halucynogennych wskazują na to, że nie powodują one fizycznego uzależnienia, pomimo zwiększającej się tolerancji przy długotrwałym zażywaniu. Natomiast mogą uzależniać psychicznie.

W grzybach halucynogennych głównymi substancjami toksycznymi są psylocybina i psylocyna, których działanie farmakologiczne przypomina LSD. W bieluniu dziędzierzawa substancjami toksycznymi są alkaloidy tropanowe, głównie hiosejamina, a najważniejszym składnikiem aktywnym jest atropina (antagonista acetylocholiny).

Z powodu łatwego dostępu młodych ludzi zarówno do naturalnych, jak i hodowlanych grzybów halucynogennych oraz do nasion i liści bielunia, w laboratoriach toksykologicznych przy oddziałach ostrych zatruc wykonuje się określone badania, pozwalające na potwierdzenie ich spożycia. Podstawową metodą diagnostyczną jest chromatografia cienkowarstwowa (TLC), za pomocą której wykrywa się obecność alkaloidów tropanowych (atropinę i skopolaminę) zawartych w bieluniu oraz pochodnych indolowych (psylocynę i psylocybinkę) zawartych w grzybach.

Bardzo rzadko dochodzi do zatruc śmiertelnych spowodowanych spożyciem grzybów halucynogen- nych czy nasion i liści bielunia, stwarzają one jednak realne zagrożenie i niebezpieczeństwo dla dzieci i młodzieży – często w internecie są one reklamowane jako darmowe i dostępne zamienniki silnych narkotyków.

Słowa kluczowe: grzyby halucynogenne, bielunia dziędzierzawa, alkaloidy tropanowe, psylocybina, psylocyna, uzależnienie, metody wykrywania

WSTĘP

W świecie roślin i grzybów wykryto do tej pory ponad 200 gatunków o właściwościach halucynogennych. W Polsce najłatwiej o grzyby halucynogenne z rodzaju łysiczka (Psilocybe) oraz bielunie (np. bielun dziędzierzawa), popularnie określone mianem datura, od ich łacińskich nazw (np. Datura stramonium). Grzyby można spotkać wszędzie, w lasach, na polach, na łąkach śródziemskich, a przy łatwym i prostym dostępie do internetu można je kupić również tą drogą, razem ze szczegółową instrukcją dotyczącą hodowli i sposobów spożycia. Podobnie bielun rośnie na łąkach, trawnikach, w przydomowych ogródkach. Hoduje się go najczęściej dla pięknych kwiatów, nie wiedząc, jakie niebezpieczeństw no niesie ze sobą.

Dzięki powszechności, łatwemu dostępowi i niewielkim lub znikomym kosztom ich uzyskania, zarówno psylocyna, jak i datura są najczęściej spożywane przez młodzież uzależnioną lub eksperymentującą z różnymi substancjami zmiennymi świadomość.

Za właściwości halucynogenne w bieluniach i grzybach odpowiadają głównie alkaloidy. Mają one zdolność wpływania na funkcjonowanie układu nerwowego człowieka, a efekty ich działania są różne: od uspokajania i znieczulania, przez pobudzanie, po wywoływanie halucynacji. Alkaloidy w czystej postaci lub w surowcach je zawierających są toksyczne, przyjęte w dużych dawkach powodują zatrucia, także śmiertelne (1).

Popularyzacja wiedzy na temat składu łatwo dostępnych środków halucynogen- nych, poznawanie ich działania, metod identyfikacji surowca, który stał się przyczyną zatrucia oraz wykrywania związków toksycznych w materiale biologicznym, czyli w surowicy i mocz-u – wydaje się zasadne.
WŁAŚCIWOŚCI I DZIAŁANIE

Grzyby halucynogenne

Grzyby halucynogenne przez toksykologów zaliczane są do grupy trzeciego typu toksyczności, określonego neurologicznym oraz ze względu na działanie na człowieka sklasyfikowane są do szóstej grupy toksyczności (halucynogenne). Obecnie znanych jest około 80 gatunków grzybów posiadających właściwości halucynogenne. Należą one głównie do rodzaju Psilocybe, natomiast sporadycznie do rodzajów pokrewnych – kołpaczek (Panaeolus) i Łysak (Gymnopilus) (2).

Oprócz grzybów z rodzaju Psilocybe występujących w Polsce, właściwości psychoaktywne ma także muchomor czerwony (Amanita muscaria) oraz muchomor plamisty (Amanita pantherina). Istnieją gatunki podejrzewane o zawartość substancji halucynogennych (nie jest to jeszcze dokładnie sprawdzone). Zaliczono do nich:

- pierścieniaki: pierścieniak wieńczony (Stropharia coronilla)
- czerńniklaki: czerńniklak narkotyczny (Corpinus narcoticus), czerńniklak postolity (Corpinus atramentarius)
- kołpaczki: kołpaczek motylkowy (Panaeolus papilionaceus)
- niektóre gatunki z rodzaju strzępiak (Inocybe), stożkogłówka (Conocybe), drobnołuszczyk (Plutens), łysak (Gymnopilus) (1).

Jak wynika z literatury zawartość procentowa substancji halucynogennych w grzybach jest zmienna i zależy od gatunku, stadium rozwoju grzyba, warunków klimatycznych oraz dostępności rozpuszczalnego azotu i fosforu w glebie (4, 5, 6, 7, 8, 9, 10). W efekcie sila ich halucynogennego działania jest różna.

Grzyby występują sezonowo, do zatrucia nimi dochodzi jednak praktycznie przez cały rok. Mogą być przechowywane w postaci suszu. Możliwa jest również ich hodowla w warunkach domowych, a grzybnię łatwo kupić przez internet (11). Poza tym wyselekcjonowane odmiany grzybni (hodowane na sztucznym podłożu) mogą mieć zwiększoną zawartość głównej substancji czynnej – psilocybiny, wynoszącą średnio 1,12% tego związku (w grzybach rosnących w warunkach naturalnych to 0,98%) (3). Największą ilość psilocybiny stwierdzono w surowych P. cyanescens sięgającą 3,0±0,24 mg na 100 mg grzyba (12).

Grzyby halucynogenne spożywane są głównie w postaci surowej, gdyż daje ona najsilniejsze doznania już po 20–40 minutach. Jest to jednak cecha indywidualna osób spożywających grzyby i objawy ich działania mogą niekiedy wystąpić już po 10 minutach, czasem dopiero po 1 godzinie (3, 13, 14). Przechowywane są
najczęściej w postaci suszonej bądź mrożonej, co w znacznym stopniu pozwala zachować wysoką aktywność zawartych w nich substancji psychoaktywnych (13, 15).

Objawy występujące po spożyciu grzybów
- Halucynacje, zmiany percepcyjne i zmiany sposobu postrzegania świata definicjonane jako fałszywe spostrzeżenia zmysłowe, patologiczne postrzeganie przedmiotów, które nie znajdują się w polu widzenia jednostki lub w ogóle nie istnieją. Halucynacją towarzyszy silne przekonanie o realności odbieranych bodźców (1).
- Uczucie blogostanu czyli przyjemne odprężenie, wrażenie „odpływania”, przyjemne barwne wizje, ogólne pozytywne postrzeganie stanu rzeczy, uczucie opuszczenia ciała, brak koordynacji ruchowej (17).
- Stany psychiczne w tym paranoidalne urojenia oraz obsesje, nagłe i gwałtowne zmiany osobowości oraz toku postępowania. Może dojść do objawów, które nazywane są „bad trip” (3).
- Nadmiernie pobudzenie psychosomatyczne, huśtawka nastrojów.
- Różnego rodzaju zaburzenia ze strony układu pokarmowego – wymioty, biegunki i bóle brzucha.

Pierwsze objawy występują najczęściej po kilkunastu minutach od spożycia i są to: otępienie i senność, brak koordynacji ruchowej i uczucie mrowienia ust. W drugim etapie może pojawić się „podwyższenie nastroju”. Ma się wtedy poczucie rozpierającej energii i ogromnej siły. W zależności od dawki opisane objawy występują po kilku/kilkunastu godzinach od spożycia grzybów (3).

Dotychczasowe badania dowodzą, że nie ma możliwości fizycznego uzależnienia się od grzybów, mimo zwiększającej się tolerancji przy długotrwałym zażywaniu, natomiast można uzależnić się psychicznie. Poszukiwanie wrażeń zmysłowych i działanie halucynogenne grzybów nie jest obojętne dla organizmu, zwłaszcza dla osób młodych. Może dojść do wystąpienia objawów ostrej psychozy W takim stanie człowiek traci poczucie rzeczywistości, staje się agresywny – zagraża sobie i otoczeniu (18, 19).

W grzybach halucynogennych głównymi substancjami toksycznymi są psylocybinia i psylocyna. Oprócz tego występuje w ilościach śladowych baecocystyna i norbaecocystyna (tabela 1) (1, 4, 5, 6, 7, 8, 9, 10).

Farmakologiczne efekty działania tych związku przypominają efekty wywołane przez LSD, są jednak znacznie (ok. 100 razy) słabsze (1). Zarówno psylocybinia, jak i psylocyna wykazują w budowie chemicznej podobieństwo do neuroprzekaźnika serotonininy. Psylocyna przenika barierę krew–mózg i jest agonistą receptorów serotonininy. Dzięki temu zwiększają one poziom serotonininy w mózgu oraz powodują pobudzenie czynności sensoromotorycznych i percepcyjnych (20).
Tabela 1.
Zawartość psilocyny, psilocybiny i baecystyny w przeliczeniu na suchą masę grzyba w niektórych gatunkach grzybów z rodzaju *Psilocybe* (P)
The contents of psilocin, psilocybin and baecystin calculated on the dry weight of fungus in some species of mushrooms of the genus *Psilocybe* (P)

<table>
<thead>
<tr>
<th>Gatunki Species</th>
<th>Psilocibina (%)</th>
<th>Psilocyna (%)</th>
<th>Baecystyna (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. azurescens</td>
<td>1,78</td>
<td>0,38</td>
<td>0,35</td>
</tr>
<tr>
<td>P. bohemica</td>
<td>1,34</td>
<td>0,11</td>
<td>0,02</td>
</tr>
<tr>
<td>P. semilanceata</td>
<td>0,98</td>
<td>0,02</td>
<td>0,36</td>
</tr>
<tr>
<td>P. baeocystis</td>
<td>0,85</td>
<td>0,59</td>
<td>0,1</td>
</tr>
<tr>
<td>P. cyanescens</td>
<td>0,85</td>
<td>0,36</td>
<td>0,03</td>
</tr>
<tr>
<td>P. tampanensis</td>
<td>0,68</td>
<td>0,32</td>
<td>–</td>
</tr>
<tr>
<td>P. cubensis</td>
<td>0,63</td>
<td>0,60</td>
<td>0,25</td>
</tr>
<tr>
<td>P. weilii</td>
<td>0,61</td>
<td>0,27</td>
<td>0,05</td>
</tr>
<tr>
<td>P. hoogshagenii</td>
<td>0,60</td>
<td>0,10</td>
<td>–</td>
</tr>
<tr>
<td>P. stuntzi</td>
<td>0,36</td>
<td>0,12</td>
<td>0,02</td>
</tr>
<tr>
<td>P. cyanofibrillosa</td>
<td>0,21</td>
<td>0,04</td>
<td>–</td>
</tr>
<tr>
<td>P. liniformans</td>
<td>0,16</td>
<td>–</td>
<td>0,005</td>
</tr>
</tbody>
</table>

Oba związki znajdują się w wykazie środków odurzających w grupie I–P, stanowiącym załącznik do ustawy z dnia 29 lipca 2005 roku o przeciwdziałaniu narkomanii (Dz.U. z 2005 r., Nr 179, poz. 1485, z późn. zm.).

Oprócz tych dwóch związków w wielu grzybach o właściwościach halucynogennych występuje także kwas ibotenowy oraz muscymol i pochodne izoksazolu (21). Substancje te można znaleźć w znacznych ilościach w muchomorach (*Amanita muscaria*, *Amanita pantherina*) i to właśnie one są odpowiedzialne za ich właściwości odurzające.

Kwas ibotenowy jest strukturalnie podobny do glutaminy i aktywuje receptory NMDA. Ma działanie 5–8 razy słabsze niż muscymol, który odpowiada za większość czasu działania psychoaktywnego muchomorów. Muscymol oddziałuje poprzez blokowanie receptora GABA-A. Działa na kilka obszarów mózgu – kory mózgową, hipokamp i mórdzek. Wpływa na poziom neuroprzekąźników. Zwiększa ilość serotonininy i acetylocholiny w mózgu, Wydalany jest z organizmu w postaci niezmienionej (1). Inne związki występujące w muchomorach to: muskazolin i muskaryna. Są obecne w śladowych ilościach i nie mają zbyt dużego wpływu na działanie odurzające.

Bieluń dziędzierzawa

Bieluń dziędzierzawa (*Datura stramonium*) jest rośliną jednoroczną z rodziny psiankowatych. Rośnie na śmiertnikach i gruzach, osiągając wysokość od 60 do 100 cm. Można ją hodować i posiadać bez żadnych konsekwencji prawnych.
W celu wywołania halucynacji młodzi konsumenci narkotyków zazwyczaj piją wodne napary, żują święże lub suszone liście czy nasiona. Sporadycznie liście zmieszané z marihuaną są palone w postaci ręcznie sporządzonego papierosa (22).

Datura nie jest jedyną rośliną, której spożycie może wywoływać objawy halucynogenne. Oprócz niej w Polsce występują także *Atropa belladonna* – pokrzyw wilcza jagoda oraz *Hyoscyamus niger* – lulek czarny. Zatrucia tymi roślinami, w porównaniu z bieluniem, pojawiają się jednak sporadycznie.

Substancją toksyczną są alkaloidy tropanowe, głównie hisocyamina, występująca we wszystkich częściach rośliny. Podczas suszenia tworzy się z niej atropina i skopolamina.

Części roślin zawierają 0,2–0,6% alkaloidów, a nasiona ok. 0,5%. Jeden gram nasion zawiera 2–4 mg alkaloidów tropanowych. Około 40–50 nasion dojrzałego owocu może wywołać ciężkie zatrucie.

METODY IDENTYFIKACJI

Analiza chemiczno-toksykologiczna

Dostępność grzybów halucynogennych, a także nasion i liści bielunia, problemy zdrowotne wywołane ich użyciem wiążą się z koniecznością wykonania badań laboratoryjnych w celu wykrycia tych substancji w organizmie dla potwierdzenia bądź wykluczenia rodzaju zatrucia.

Podstawową metodą stosowaną w tych przypadkach przez laboratorium jest chromatografia cienkowarstwowa (TLC), za pomocą której wykrywa się obecność alkaloidów tropanowych (atropinę i skopolaminę) zawartych w bieluniu oraz pochodnych indolowych (psylocynę i psylocybínę) zawartych w grzybach (8, 24, 25, 26, 27). Rozdziału dokonuje się na płytkach pokrytych żelem krzemionkowym.

Przy oznaczaniu pochodnych indolowych najlepsze efekty rozdziału uzyskuje się przy użyciu eluentów: takich jak n-butanol z kwasem octowym i wodą (12:3:5, v/v/v), 1,5% roztwór amoniaku w metanolu oraz 25% wodny roztwór amoniaku z n-propanolem (12:188:500, v/v/v). Pierwszy z opisanych eluentów daje najlepszy rozdział i nie obserwuje się rozmycia plamek na płytcy (8). W celu wizualizacji rozdzielonych substancji standardowo używa się odczynnika Ehrliha służącego do wykrywania amin. Ponadto psylocyna, jak i psylocybina są dobrze widoczne na płytcy w niskim pasmie promieniowania UV, czyli przy zastosowaniu lampy kwarcowej z filtrem 254 lub 366 nm.

Proces izolacji psylocybiny i psylocyny z materiału uzyskanego z grzybów jest prosty i dość szybki. Najczęściej ekstrahuje się je za pomocą metanolu lub chloroformu (27, 28). Izolację substancji halucynogennych ze sproszkowanego materiału grzybowego wykonuje się umieszczając próbki materiału zalanego metanolu lub wodą z chloroformu w łaźni ultradźwiękowej celem destrukcji komórek grzyba, a tym samym – zwiększenia efektywności ekstrakcji. Po oddzieleniu supernatantu od zawiesiny, odparowuje się rozpuszczalnik, najlepiej w środowisku nieresaktywnego gazu (azotu). Tak otrzymany ekstrakt poddaje się dalszym badaniom (13).

Alkaloidów tropanowych (atropiny i skopolamin) można poszukiwać w surowcu roślinnym oraz w moczu. Surowiec roślinny (nasiona, liście) rozdrabniane są z wodą. Po alkaliwaniu alkaloidy ekstrahuje się do mieszanki chloroformu i izopropanolu (9:1, v/v). Po oddzieleniu odparowuje się warstwę organiczną, a suchą pozostałość po rozpuszczeniu w etanolu nanosi na płytkę cienkowarstwową. Chromatogram rozwija się w układzie benzen: dioksan:etanol:25% wodny roztwór amoniaku (50:40:5:5, v/v/v/v). Alternatywnymi eluentami mogą być chloroform:metanol:amoniak (25%) (60:40:3, v/v/v) oraz metanol, amoniak (25%) (100:1,5, v/v). Do wybarwienia uzyskanego chromatogramu używa się odczynnika Dragendorffa (roztwór zasadowego azotanu bizmutowego w kwasie octowym lodowatym z jodkiem potasowym). Tak samo postępuje się z próbą moczu pobraną od osoby podejrzanej o spożycie nason lub liści bielunia (29).

Metoda TLC jest jednak za mało czuła do wykrywania psylocyny i psylocybiny w płynach ustrojowych, czyli krwi i moczu oraz atropiny i skopolaminy we krwi. Do wykrywania i oznaczania tych związków w wymienionych materiałach stosuje się chromatograficzne metody instrumentalne, tj. chromatografię gazową sprzężoną ze spektrometrią mas (GC-MS) i wysokosprawną chromatografię cieczową ze spektrometrią mas (LC-MS) z metodą jonizacji pod ciśnieniem atmosferycznym APCI. Metody te ze względu na wysokie koszty aparaturowe ciągle nie są dostępne w laboratoriach szpitalnych (12, 22, 30).
W przypadku chromatografii cieczowej do oznaczania atropiny i skopolaminy można wykorzystać odwrócony układ faz w systemie elucji gradientowej. Fazę ruchomą stanowi 0,1% kwas mrówkowy w acetonitrylu i woda. Do ekstrakcji alkaloidów z materiału biologicznego można zastosować technikę ciecz–ciecz, gdzie jako rozpuszczalnika ekstrahującego używa się eteru dietylowego i buforu weglanowego (12, 22).

Analiza mykologiczna

LECZENIE

Zatrucie wywołane spożyciem zbyt dużej ilości grzybów halucynogennych i bielunia dziędziernkowa jest niebezpieczne, ponieważ nie ma tutaj specyficznych odtrutek. Leczenie najczęściej ogranicza się do płukania żołądka w celu usunięcia nies prawionych grzybów lub ścieś bielunia oraz do leczenia objawowego znoszącego działanie psychozyny lub alkaloidów tropanowych (atropiny i skopolaminy). W przypadku grzybów halucynogennych można podać dożylnie 1% roztwór błękitu metylenuowego (*Coloxyl*) oraz witaminę C.

Przy długotrwałych zaburzeniach psychicznych można sięgnąć po leki uspokajające, takie jak valium czy leki przeciwpyschotyczne, jak np. tiorydazyna (33).

DYSKUSJA

W dzisiejszych czasach, w obie narastającej fali narkomanii i sięgania po różne substancje i środki w celu modulowania psychiki, czyli przeżywania odmiennej świadomości, stosowanie grzybów halucynogennych i bielunia dziędzierzawa staje się zagrożeniem dla mało doświadczoną młodzieży. Ograniczony dostęp do LSD czy mocniejszych narkotyków jest rekompensowany popytem na grzyby halucynogenne oraz inne halucynogeny pochodzenia roślinnego. Mimo że bardzo rzadko dochodzi do zatruc śmiertelnych, spowodowanych spożyciem grzybów halucynogennych czy nasion i liści bielunia, stwarzają realne zagrożenie i niebezpieczeństwo dla dzieci i młodzieży, gdyż często (nawet w internecie) są one reklamowane jako darmowe i łatwo dostępne zamienniki mocnych narkotyków, na które ci młodzi ludzie (najczęściej 13–15-latkowie) nie mają pieniędzy. Dużym niebezpieczeństwem, i chyba niedocenianym, jest wpływ substancji halucynogennych na ludzi o słabej konstrukcji psychicznej, kiedy może dojść do ujawnienia się psychoz, natrętw i do głębokiej zaburzeń osobowości, a nawet do rozwoju schizofrenii.

Brak wysoko specializationnej aparatury laboratoryjnej (chromatografy cieczowej lub gazowej sprzężone ze spektrometrią masową) ogranicza możliwości diagnostyczne, gdyż zazwyczaj ilość spożytych grzybów halucynogennych lub ziaren bielunia jest niewielka. W tych sytuacjach zawodą najczęściej stosowane metody chromatografii cienkowarstwowej (TLC) oraz poszukiwania zarodników lub fragmentów grzybów w popłuczynach żołądkowo-jelitowych lub kalę.

PIŚMIENNICTWO

161

Adres do korespondencji
Iwona Roguska
DIAGNOSTYKA Laboratorium
Toksykologiczne
ul. Traugutta 112, 50-420 Wrocław
e-mail: iwonka311@poczta.onet.pl

otrzymano: 7.01.10
przyjęto do druku: 28.05.10